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Abstract

We study the distribution and various properties of exponential functionals of hypergeometric
Lévy processes. We derive an explicit formula for the Mellin transform of the exponential functional
and give both convergent and asymptotic series expansions of its probability density function. As
applications we present a new proof of some of the results on the density of the supremum of a stable
process, which were recently obtained in [25] and [23]. We also derive some new results related to
(i) the entrance law of the stable process conditioned to stay positive, (ii) the entrance law of the
excursion measure of the stable process reflected at its past infimum and (iii) the entrance law and
the last passage time of the radial part of n-dimensional symmetric stable process.

Keywords: Hypergeometric Lévy processes, Lamperti-stable processes, exponential functional, dou-
ble gamma function, Lamperti transformation, extrema of stable processes.

AMS 2000 subject classifications: 60G51, 60G52.

1 Introduction

Exponential functionals of Lévy processes play a very important role in various domains of probability
theory, such as self-similar Markov processes, random processes in random environment, fragmentation
processes, branching processes, mathematical finance, to name but a few. In general, the distribution of
the exponential functional of a Lévy process X = (Xt, t ≥ 0) with lifetime ζ, defined as

I :=

ζ∫
0

e−Xtdt,

can be rather complicated. Nonetheless, this distribution is known explicitly for the case when X
is either: a standard Poisson processes, Brownian motion with drift, a particular class of spectrally
negative Lamperti stable (see for instance [18, 28, 34]), spectrally positive Lévy processes satisfying the
Cramér condition (see for instance [36]). In the class of Lévy processes with double-sided jumps the
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distibution of the exponential functional is known in closed form only in the case of Lévy processes with
hyperexponential jumps, see the recent paper by Cai and Kou [14]. An overview of this topic can be
found in Bertoin and Yor [7].

For many applications, it is enough to have estimates of P(I < t) as t→ 0+ and P(I > t) as t→ +∞.
However it is quite difficult to obtain such estimates in the general case. The behaviour of the tail
P(I > t) has been studied in a general setting (see for instance [18, 19, 22, 32, 37, 38]). On the other
hand, the behaviour of P(I < t) has been studied only in two particular cases: when X has exponential
moments and its Laplace exponent is regularly varying at infinity with index θ ∈ (1, 2) (see [33]) and
when X is a subordinator whose Laplace exponent is regularly varying at 0 (see [9]).

At the same time, the problem of finding the distribution of the supremum of a stable process has
also stimulated a lot of research. The explcit expressions for the Wiener-Hopf factors for a dense set
of parameters were first obtained by Doney [21]. In the spectrally positive case a convergent series
representation for the density of supremum was first obtained by Bernyk, Dalang and Peskir [4], and
a complete asymptotic expantion was derived by Patie [35]. The general case was treated recently in
[25] and [23], where the authors have derived explicit formulas for the Wiener-Hopf factors, the Mellin
transform of supremum and also convergent and asymptotic series representations for the density of the
supremum.

In this paper we pursue two goals. First, we will study exponential functionals of hypergeometric
processes, we will obtain the Mellin transform and both convergent and asymptotic series representations
for the density of the exponential functional. This gives us the first explicit results on the exponential
functionals of Lévy processes which have double-sided jumps of infinite activity or infinite variation.
The technique that we develop to obtain these results may be of independent interest, as it provides a
very simple and straightforward method to derive well-known results on the exponential functionals of
Brownian motion with drift and the less-known (but very interesting) recent results by Cai and Kou [14]
for processes with double-sided hyper-exponential jumps.

The second goal is to prove that hypergeometric processes include the Lamperti-stable processes,
which will allow us to prove interesting results on fluctuations of stable processes with the help of the
Lamperti transformation. In particular, we will obtain a new proof of some of the results in [25] and [23],
which is more straightforward and less technical. We will also derive some new formulas related to the
density of the entrance law of the excursion measure of the stable process reflected at its past infimum
and will obtain some several results related to the n-dimensional symmetric stable process.

The paper is organized as follows: in Section 2 we introduce hypergeometric processes and establish
the connections between this class and the Lamperti-stable processes. In Section 3 we study the Mellin
transform of the exponential functional of the hypergeometric processes and in Section 4 we derive the
convergent and asymptotic series representations for the density of the exponential functional. Finally,
in Section 5 we present some applications of these results to fluctuations of stable processes.

2 Hypergeometric and Lamperti-stable processes

Hypergeometric processes were first introduced in [29] and, more generally, in [26]. These processes were
originally constructed using Vigon’s theory of philantropy (see [40]) and they provide examples of Lévy
processes with an explicit Wiener-Hopf factorization. The class of processes which we will study in this
paper should be considered as a generalization of the hypergeometric processes studied in [29] and of the
Lamperti-stable processes, which were introduced by Caballero and Chaumont [10].
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We start by defining a function ψ(z) as

ψ(z) = −Γ(1− β + γ − z)

Γ(1− β − z)

Γ(β̂ + γ̂ + z)

Γ(β̂ + z)
, (1)

where (β, γ, β̂, γ̂) belong to the admissible set of parameters

A = {β ≤ 1, γ ∈ (0, 1), β̂ ≥ 0, γ̂ ∈ (0, 1)}. (2)

Our first goal is to show that ψ(z) is the Laplace exponent of a (possibly killed) Lévy process X, that is
ψ(z) = ln E[exp(zX1)]. This process and its properties will be presented in the next Proposition. From
now on we will use the following notation

η = 1− β + γ + β̂ + γ̂. (3)

Proposition 1.

(i) The function ψ(z) defined by (1) is the Laplace exponent of a Lévy process X. The density of its
Lévy measure is given by

π(x) =


− Γ(η)

Γ(η − γ̂)Γ(−γ)
e−(1−β+γ)x

2F1

(
1 + γ, η; η − γ̂; e−x

)
, if x > 0,

− Γ(η)

Γ(η − γ)Γ(−γ̂)
e(β̂+γ̂)x

2F1 (1 + γ̂, η; η − γ; ex) , if x < 0,

(4)

where 2F1 is the Gauss hypergeometric function.

(ii) When β < 1 and β̂ > 0 the process X is killed at the rate

q = −ψ(0) =
Γ(1− β + γ)

Γ(1− β)

Γ(β̂ + γ̂)

Γ(β̂)
.

When β = 1 and β̂ > 0 {β < 1 and β̂ = 0} X drifts to +∞ {−∞} and

E[X1] =
Γ(γ)Γ(β̂ + γ̂)

Γ(β̂)

{
E[X1] = −Γ(γ̂)Γ(1− β + γ)

Γ(1− β)

}
.

When β = 1 and β̂ = 0 the process X oscillates.

(iii) The process X has no Gaussian component. When γ+ γ̂ < 1 {1 ≤ γ+ γ̂ < 2} the process has paths
of bounded variation and no linear drift {paths of unbounded variation}.

(iv) We have the Wiener-Hopf factorization −ψ(z) = κ(q,−z)κ̂(q, z) where

κ(q, z) =
Γ(1− β + γ + z)

Γ(1− β + z)
, κ̂(q, z) =

Γ(β̂ + γ̂ + z)

Γ(β̂ + z)
(5)

(v) The process X̂ = −X is a hypergeometric process with parameters (1− β̂, γ̂, 1− β, γ).
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Proof. First let us prove (i). Let X(1) be a general hypergeometric Lévy process (see section 3.2 in [26])
with parameters

σ = d = k1 = δ1 = δ2 = 0, β = 1, c1 = − 1

Γ(−γ)
, c2 = − 1

Γ(−γ̂2)
,

α1 = β, α2 = 1− β̂, γ1 = γ, γ2 = γ̂, k2 =
Γ(β̂ + γ̂)

Γ(β̂)
.

This process is constructed using Vigon’s theory of philantropy (see [40]) from two subordinators H(1)

and Ĥ(1) which have Laplace exponents

κ(1)(q, z) = κ(q, z)− κ(q, 0), κ̂(1)(q, z) = κ̂(q, z)

where κ(q, z) and κ̂(q, z) are given by (5). We see that the Lapalace exponent ψ(1)(z) of process X(1)

satisfies

ψ(1)(z) = ψ(z) + kκ̂(q, z)

where we have denoted k = κ(q, 0). Therefore the process X
(1)
t has the same distribution as Xt − Ĥkt,

in particular the distribution of positive jumps of X(1) coincides with the distribution of positive jumps
of X. From [26] we find that the Lévy measure of X(1) restricted to x > 0 coincides with (4). The
expression of the Lévy measure for x < 0 follows easily by symmetry considerations. This proves that
ψ(z) defined by (1) is the Laplace transform of a (possibly killed) Lévy process with the density of the
Lévy measure given by (4).

The rest of the proof is rather straightforward. Property (v) follows easily from the definition of the
Laplace exponent (1). The Wiener-Hopf factorization (iv) follows easily by construction: we know that
both κ(q, z) and κ̂(q, z) defined by (5) are Laplace transforms of (possibly killed) subordinators, and the
result follows from identity −ψ(z) = κ(q,−z)κ̂(q, z) and the uniqueness of the Wiener-Hopf factorization
(see [27]).

Let us prove (ii). The fact that X drifts to +∞ when β = 1 and β̂ > 0 follows from the Wiener-Hopf
factorization (iv): in this case κ(q, 0) = 0, therefore the ascending ladder height process drifts to +∞,
while the descending ladder height process is killed at a rate κ̂(q, 0) > 0. The expression for E[X1] follows
from (1) using the fact that E[X1] = ψ′(0). Other results in (ii) can be verified in a similar way.

Let us prove (iii). Formula (1) and the asymptotic expansion for the Gamma function (see formula
8.328.1 in [24]) imply that

ψ(iz) = O(|z|γ+γ̂) = o(|z|2), z →∞, z ∈ R. (6)

Applying Proposition 2 from [5] we conclude that X has no Gaussian component, and that when γ+γ̂ < 1
{1 < γ + γ̂ < 2} the process has paths of bounded variation and no linear drift {paths of unbounded
variation}. In the remaining case γ + γ̂ = 1 the density of the Lévy measure has a singularity of the
form Cx−2 + o(x−2) as x→ 0+ (see formula 15.3.12 in [1]), which implies that the process has paths of
unbounded variation. ut

Remark 1: It is possible to extend the definition of the hypergeometric processes to the case when
γ ∈ {0, 1} or γ̂ ∈ {0, 1}. In the case when γ = 1 and γ̂ ∈ (0, 1) the process X is spectrally negative.
This is true due to the formula (4), which shows that π(x) = 0 for x > 0; one can also establish this
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fact using (5), which imlies that κ(q, z) = 1 − β + z. Similarly, when γ̂ = 1 and γ ∈ (0, 1) the process
X is spectrally positive. When γ = γ̂ = 1 the process X is Brownian motion with drift, killed at an
exponential time. When γ = 0 {γ̂ = 0} the process −X {X} is a subordinator.

The three Lamperti-stable processes ξ∗, ξ↑ and ξ↓ were introduced by Caballero and Chaumont [10]
by applying the Lamperti transformation (see [30]) to the positive self-similar Markov processes related
to stable process. In particular, the process ξ∗ is obtained from a stable process started at x > 0 and
killed on the first exit from the positive half-line, while the process ξ↑ {ξ↓} is obtained from stable process
conditioned to stay positive {conditioned to hit zero continuously}. We refer to [10, 18, 13] for all the
details on these processes.

For our next result we will need the form of the Laplace exponent of the Lamperti-stable process ξ∗.
We assume that the characteristic exponent ΨY (z) = − ln E[exp(izY1)] of a stable process Y is defined
as

ΨY (z) = e
πiγ
2 zα1{z>0} + e−

πiγ
2 |z|α1{z<0}, (7)

where |γ| < α if α ∈ (0, 1) and |γ| < 1 if α ∈ (1, 2). With this parametrization the density of the Lévy
measure of Y is given by

πY (x) = c+x
−1−α1{x>0} + c−|x|−1−α1{x<0},

where

c+ = Γ(1 + α)
sin(παρ)

π
, c− = Γ(1 + α)

sin(πα(1− ρ))

π
(8)

and ρ = P(Y1 > 0) = (1− γ/α)/2. Note that this parameter was corresponds to 1− ρ in [10]. According
to Caballero and Chaumont [10], the Laplace exponent ψ∗(z) = ln E[exp(zξ∗1)] of the Lamperti-stable
process ξ∗ is given by

ψ∗(z) =
c+ − c−
1− α

z +

∫
R\{0}

(
ezx − 1− z(ex − 1)1{|ex−1|<1}

)
exπY (ex − 1) dx− c−α−1. (9)

It is important to note that when α < 1, the Laplace exponent (9) can be rewritten as

ψ∗(z) =

∫
R\{0}

(ezx − 1) exπY (ex − 1) dx− c−α−1,

so that in this case ξ∗ is a process of bounded variation with no linear drift.

Theorem 1. Lamperti-stable processes ξ∗, ξ↑, ξ↓ can be identified as hypergeometric processes with the
following sets of parameters

β γ β̂ γ̂

ξ∗ 1− α(1− ρ) αρ 1− α(1− ρ) α(1− ρ)

ξ↑ 1 αρ 1 α(1− ρ)

ξ↓ 0 αρ 0 α(1− ρ)
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Proof. For the proof of the result for ξ↑ see Proposition 2 in [29]. The result for ξ↓ follows from Proposition
1 in [18]. Thus we only need to prove the result for ξ∗.

Let us set (β, γ, β̂, γ̂) = (1− α(1− ρ), αρ, 1− α(1− ρ), α(1− ρ)) and compute the Lévy measure of
the hypergeometric process X. We find that η = 1 + α, and formula (4) implies that for x > 0 we have

π(x) = − Γ(1 + α)

Γ(1 + αρ)Γ(−αρ)
e−αx2F1

(
1 + αρ, 1 + α; 1 + αρ; e−x

)
= Γ(1 + α)

sin(παρ)

π
e−αx(1− e−x)−1−α = exπY (ex − 1)

where we have used the reflection formula for the gamma function and the fact that 2F1(a, b; a, z) =
(1 − z)−b. Similarly, we find that π(x) = exπY (ex − 1) for x < 0. We see that the Lévy measure of the
hypergeometric process is the same as the Lévy measure of the Lamperti-stable process. We know that
in the case α < 1 both of these processes have paths of finite variation and no linear drift, this proves

that X
d
= ξ∗ in the case α < 1.

In the case α > 1 processes X and ξ∗ have infinite variation, no Gaussian component and identical
Lévy measures. Thus their Laplace exponents may differ only by a linear function. Thus in order to
establish that the Laplace exponents are equal it is enough to show that E[X1|ζ > 1] = E[ξ∗1 |ζ > 1].
Using (1) and the reflection formula for the gamma function we find that the Laplace exponent of the
hypergeometric process X is given by

ψX(z) =
1

π
Γ(α− z)Γ(1 + z) sin(π(z − α(1− ρ)))

Therefore we have

E[X1|ζ > 1] = ψ′X(0) = Γ(α)
sin(πα(1− ρ))

π
(Ψ(α)−Ψ(1)) + Γ(α) cos(πα(1− ρ)). (10)

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function. On the other hand, equation (11) in [10] tells us that

E[ξ∗1 |ζ > 1] =
c+ − c−
1− α

+ c+

 ln(2)∫
0

(1 + y − ey)ey

(ey − 1)1+α
dy +

∞∫
ln(2)

yey

(ey − 1)1+α
dy

 (11)

+ c−

0∫
−∞

(1 + y − ey)ey

(1− ey)1+α
dy,

where c+ and c− are defined in (8). Let us show that the expressions in the right-hand side of (10) and
(11) are equal.

First we will deal with the integrals multiplying c+ in (11). We rearrange the terms as follows

ln(2)∫
0

(1 + y − ey)ey

(ey − 1)1+α
dy +

∞∫
ln(2)

yey

(ey − 1)1+α
dy =

∞∫
0

(1 + y − ey)ey

(ey − 1)1+α
dy +

∞∫
ln(2)

(ey − 1)ey

(ey − 1)1+α
dy (12)

Performing the change of variables u = exp(y) it is easy to see that the second integral in the right-hand
side of (12) is equal to 1/(α− 1). In order to compute the first integral we use integration by parts

∞∫
0

(1 + y − ey)ey

(ey − 1)1+α
dy = − 1

α

∞∫
0

(1 + y − ey)d(ey − 1)−α =
1

α

∞∫
0

1− ey

(ey − 1)α
dy =

π

α sin(πα)
(13)
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where in the last step we have used the following integral formula

∞∫
0

eau

(ebu − 1)c
du =

1

b

Γ
(
c− a

b

)
Γ(1− c)

Γ
(
1− a

b

) ,
a

b
< c < 1, (14)

and the reflection formula for the gamma function. The last integral in (11) can also be computed using
integration by parts

0∫
−∞

(1 + y − ey)ey

(1− ey)1+α
dy =

∞∫
0

(1− y − e−y)eαy

(ey − 1)1+α
dy (15)

= − 1

α

∞∫
0

(1− y − e−y)e(α−1)yd(ey − 1)−α

=
1

α

∞∫
0

(−1 + e−y)e(α−1)y + (1− y − e−y)(α− 1)e(α−1)y

(ey − 1)α
dy

=
α− 2

α

∞∫
0

e(α−2)y

(ey − 1)α−1
dy − α− 1

α

∞∫
0

ye(α−1)y

(ey − 1)α
dy

=
α− 2

α
B(2− α, 1)− α− 1

α

d

dz

 ∞∫
0

ezy

(ey − 1)α
dy


z=α−1

= − 1

α
− 1

α
(Ψ(1)−Ψ(2− α))

where in the last step we have again used (14). Combining (11), (12), (13) and (15) we see that

E[ξ∗1 |ζ > 1] =
c+ − c−
1− α

+ c+

[
1

α− 1
+

π

α sin(πα)

]
+ c−

[
− 1

α
− 1

α
(Ψ(1)−Ψ(2− α))

]
.

Using the fact that Ψ(2−α) = Ψ(α) +π cot(πα) + 1/(1−α), the identity Γ(z+ 1) = zΓ(z) and addition
formula for the sine function it is not hard to reduce the above expression to (10), we leave all the details
to the reader. ut

3 Mellin transform of the exponential functional

Let X be the hypergeometric Lévy process with parameters (β, γ, β̂, γ̂) ∈ A and β̂ > 0. We assume that
α > 0 and define the exponential functional as

I(α,X) =

ζ∫
0

e−αXtdt, (16)
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where ζ is the lifetime of the process X. Note that the above integral converges with probability one:
according to Proposition 1, either ζ is finite (if β < 1) or ζ = +∞ and the process X drifts to +∞ (if
β = 1).

Our main tool in studying the exponential functional is the Mellin transform, which is defined as

M(s) =M(s;α, β, γ, β̂, γ̂) = E[I(α,X)s−1]. (17)

From the definition of the Laplace exponent (1) we find thatX satisfies Cramér’s condition E[exp(−β̂X1)] =
1, therefore applying Lemma 2 from [39] we conclude that M(s) exists for s ∈ (0, 1 + β̂δ).

In order to describe our main result in this section, we need to define the Barnes double gamma
function, G(z; τ). This function was introduced by Alexeiewsky in 1889 and was extensively studied by
Barnes in [2] and [3]. The double gamma function is defined as an infinite product in Weierstrass’s form

G(z; τ) =
z

τ
ea

z
τ

+b z
2

2τ

∏
m≥0

∏
n≥0

′
(

1 +
z

mτ + n

)
e
− z
mτ+n

+ z2

2(mτ+n)2 , | arg(τ)| < π, z ∈ C. (18)

Here the prime in the second product means that the term corresponding to m = n = 0 is omitted. Note
that by definition G(z; τ) is an entire function in z and has simple zeros on the lattice mτ + n, m ≤ 0,
n ≤ 0. The function G(z; τ) can also be expressed as an infinite product of gamma functions, see [2]. An
integral representation for ln(G(z; τ)) was obtained in [31] and several important asymptotic expansions
were established in [8].

It turns out that it is possible to define constants a = a(τ) and b = b(τ) in a particular way, so that
we have G(1; τ) = 1 and that G(z; τ) satisfies the following three functional identities (see [2] and [25])

G(z + 1; τ) = Γ
(z
τ

)
G(z; τ), (19)

G(z + τ ; τ) = (2π)
τ−1
2 τ−z+

1
2 Γ(z)G(z; τ), (20)

G(z; τ) = (2π)
z
2(1− 1

τ )τ−
z2

2τ
+ z

2(1+ 1
τ )−1G

(
z
τ
; 1
τ

)
. (21)

Next we introduce a function which will play a central role in our study of exponential functionals.
Everywhere in this paper we will use notation

δ =
1

α
.

Definition 1. For s ∈ C we define

M(s) = M(s;α, β, γ, β̂, γ̂) = C
G((1− β)δ + s; δ)

G((1− β + γ)δ + s; δ)

G((β̂ + γ̂)δ + 1− s; δ)
G(β̂δ + 1− s; δ)

, s ∈ C. (22)

where the constant C is such that M(1) = 1.

Our main result in this section is the following Theorem, which provides an explicit expression for
the Mellin transform of the exponential functional.

Theorem 2. Assume that α > 0, (β, γ, β̂, γ̂) ∈ A and β̂ > 0. Then M(s) ≡ Γ(s)M(s) for all s ∈ C.

Before we are able to prove Theorem 2, we need to establish several auxiliary results.
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Lemma 1.

(i) Assume that τ > 0. When s→∞ in the domain | arg(s)| < π − ε < π we have

ln

[
G(a+ s; τ)

G(s; τ)

]
=
a

τ
s ln(s)− a

τ
(1 + ln(τ))s+

a

2τ
(a− 1− τ) ln(s) +O(1). (23)

(iv) When s→∞ in the domain 0 < ε < arg(s) < π − ε we have

ln(M(s)) = −(γ + γ̂)s ln(s) + s((1 + ln(δ))(γ + γ̂) + πiγ̂) +O(ln(s)). (24)

(iii) When s→∞ in a vertical strip a < Re(s) < b we have∣∣M(s)
∣∣ = exp

(π
2

(γ − γ̂)|Im(s)|+O(ln |Im(s)|)
)
. (25)

Proof. Part (i) follows from the asymptotic expansion for G(z; τ), given in formula (4.5) in [8], while
parts (ii) and (iii) are simple corollaries of (i) and (22). ut

The following notation will be used extensively in this paper: if X is a hypergeometric process with
parameters (β, γ, β̂, γ̂), then X̃ denotes the hypergeometric process with parameters (δβ, δγ, δβ̂, δγ̂),
provided that this parameter set is admissible. In particular, the Laplace exponent of X̃ is given by

ψ̃(z) = −Γ(1− δ(β − γ)− z)Γ(δ(β̂ + γ̂) + z)

Γ(1− δβ − z)Γ(δβ̂ + z)
. (26)

Lemma 2.

(i) M(s) is a real meromorphic function which has zeros{
− (1− β)δ −mδ − n, 1 + (β̂ + γ̂)δ +mδ + n

}
m,n≥0

, (27)

and poles {
z−m,n = −(1− β + γ)δ −mδ − n, z+

m,n = 1 + β̂δ +mδ + n

}
m,n≥0

. (28)

All zeros/poles are simple if α /∈ Q.

(ii) M(s) satisfies the following functional identities

M(s+ 1) = − 1

ψ(−αs)
M(s), (29)

M(s+ δ) = − α−δ(γ̂+γ)

ψ̃(1− δ − s)
M(s), (30)

M(s;α, β, γ, β̂, γ̂) = α(1−s)(γ+γ̂)M(1− α + αs; δ, δβ, δγ, δβ̂, δγ̂). (31)
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Proof. The proof of (i) follows from the definition of the double gamma function (18), while functional
identity (29) is a simple corollary of the functional identity for the double gamma function (19).

Let us prove (31). We use (21) and find that for all s and x

G (s+ x; δ)

G (s; δ)
= ααsxC

G(α(s+ x);α)

G(αs;α)

where C = C(x) depends only on x. The above identity implies that

G((1− β)δ + s; δ)

G((1− β + γ)δ + s; δ)

G((β̂ + γ̂)δ + 1− s; δ)
G(β̂δ + 1− s; δ)

= C̃α−s(γ+γ̂) G(1− β + αs;α)

G(1− β + γ + αs;α)

G(β̂ + γ̂ + α− αs;α)

G(β̂ + α− αs;α)

where C̃ does not depend on s. It is easy to see that (31) follows from the above identity and (22).
The functional identity (30) follows from (31) and (29), we leave all the details to the reader. ut

The following proposition will be central in the proof of Theorem 2. It allows us to identify explicitly
the Mellin transform of the exponential functional. This result is also applicable to some other Lévy
process, including Brownian motion with drift and more generally, processes with hyperexponential or
phase-type jumps, therefore it is of independent interest.

First let us present the main ingredients. Let Y be a (possibly killed) Lévy process started from
zero, and let ψY (z) = ln E[exp(zY1)] denote its Laplace exponent. In the case when ψY (0) = 0 (the
process is not killed) we will also assume that E[Y1] > 0, so that Y drifts to +∞. As usual we define

the exponential functional I =
∫ ζ

0
exp(−Yt)dt (where ζ is the lifetime of Y ) and the Mellin transform

MY (s) = E[Is−1].

Proposition 2. (Verification result) Assume that Cramér’s condition is satisfied: there exists z0 < 0
such that ψY (z) is finite for all z ∈ (z0, 0) and ψY (−θ) = 0 for some θ ∈ (0,−z0). If f(s) satisfies the
following three properties

(i) f(s) is analytic and zero-free in the strip Re(s) ∈ (0, 1 + θ),

(ii) f(1) = 1 and f(s+ 1) = −sf(s)/ψY (−s) for all s ∈ (0, θ),

(iii) |f(s)|−1 = o(exp(2π|Im(s)|)) as Im(s)→∞, Re(s) ∈ (0, 1 + θ),

then MY (s) ≡ f(s) for Re(s) ∈ (0, 1 + θ).

Proof. The Cramér’s condition and Lemma 2 in [39] imply that MY (s) can be extended to an analytic
function in the strip Re(s) ∈ (0, 1 + θ). In the case when ψY (0) = 0 {ψY (0) < 0} we use Lemma 2.1 in
[32] {Proposition 3.1 from [15]} to conclude that MY (s) satisfies the functional identity

MY (s+ 1) = − s

ψY (−s)
MY (s) (32)

for all s ∈ (0, θ). Since f(s) satisfies the same functional identity we conclude that the function F (s) =
MY (s)/f(s) satisfies F (s+ 1) = F (s) for all s ∈ (0, θ). Using the assumption that f(s) is analytic and
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zero-free we conclude that F (s) is an analytic function in the strip Re(s) ∈ (0, 1 + θ). Since F (s) is also
periodic with period equal to one, it can be extended to an analytic and periodic function in the entire
complex plane.

Our goal now is to prove that function F (s) is constant. Since F (s) is analytic and periodic in the
entire complex plane, it can be represented as a Fourier series

F (s) = c0 + F1(exp(2πis)) + F2(exp(−2πis)), (33)

where Fi(z) are entire functions

F1(z) =
∑
n≥1

cnz
n, F2(z) =

∑
n≥1

c−nz
n

Due to the inequality |MY (s)| <MY (Re(s)) and assumption (iii) we conclude that F (s) = o(exp(2π|Im(s)|))
as Im(s) → ∞. As Im(s) → −∞ this estimate and equation (33) imply that F1(z) = o(z) as z → ∞,
and using Cauchy’s estimates (Proposition 2.14 in [20]) we conclude that F1(z) ≡ 0. Similarly we find
that F2(z) ≡ 0, thus F (s) is a constant, and the value of this constant is one, sinceMY (1) = f(1) = 1. ut

We would like to stress that Proposition 2 is an important result of indepent interest. We know that
if Cramér’s condition is satisfied then the Mellin transform MY (s) satisfies the functional identity (32),
however it is clear that there are infinitely many functions which satisfy the same functional identity.
Proposition 2 tells us that if we have found such a function f(s), which satisfies (32), and if we can verify
the two conditions about the zeros of this function and its asymptotic behaviour, then we can in fact
uniquely identify MY (s) ≡ f(s). In particular, this proposition can be used to provide a very simple
and short proof of the well-known result on exponential functional of Brownian motion with drift and
of the recent results on exponential functionals of processes with double-sided hyper-exponential jumps
(see [14]).

Proof of Theorem 2: First of all, we check that the Cramér’s condition is satisfied with θ = β̂δ. Let
f(s) = Γ(s)M(s), where M(s) is defined by (22). From Lemma 2(i) we know that f(s) is analytic and
zero-free in the strip Re(s) ∈ (0, 1 + β̂δ). By construction we have f(1) = 1, and from the formula (29)
we find that f(s) satisfies f(s+ 1) = −sf(s)/ψ(−αs) for s ∈ (0, β̂δ). Next, Lemma 1(iii) and Stirling’s
asymptotic formula for the gamma function (see formula 8.327.3 in [24])

ln(Γ(s)) = s ln(s)− s+O(ln(s)) (34)

imply that as s→∞ in the vertical strip Re(s) ∈ (0, 1 + β̂δ) we have

|f(s)|−1 = exp
(π

2
(1− γ + γ̂) |Im(s)|+ o(Im(s))

)
= o (exp(π|Im(s)|)) ,

where in the last step we have also used the fact that both γ and γ̂ belong to the interval (0, 1).
We see that function f(s) satisfies all conditions of Proposition 2, thus we can conclude thatM(s) ≡

f(s). ut

Corollary 1. Assume that α > 0, β̂ > 0 and that both sets of parameters (β, γ, β̂, γ̂) and (δβ, δγ, δβ̂, δγ̂)
belong to the admissible set A. Then we have the following identity in distribution

εα1 × I(α;X)
d
= αγ+γ̂ × ε1 × I(δ; X̃)α (35)

where ε1 ∼ Exp(1) and all random variables are assumed to be independent.
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Proof. Rewrite (31) as

Γ(1− α + αs)M(s;α, β, γ, β̂, γ̂) = α(s−1)(γ+γ̂)Γ(s)M(1− α + αs; δ, δβ, δγ, δβ̂, δγ̂)

and use the following facts: (i) Γ(s) = E[εs−1
1 ]; (ii) if f(s) is the Mellin transform of a random variable

ξ then f(1 − α + αs) is the Mellin transform of the random variable ξα; (iii) Mellin transform of the
product of independent random variables is the product of their Mellin transforms. ut

4 Density of the exponential functional

In this section we will study the density of the exponential functional, defined as

p(x) =
d

dx
P(I(α,X) ≤ x), x ≥ 0.

As in the previous section, X is a hypergeometric process with parameters (β, γ, β̂, γ̂) ∈ A and β̂ > 0. The
main results of this section are the convergent series representations and complete asymptotic expansions
of this function as x→ 0+ or x→ +∞.

Let us define the following three sets of parameters which will be used extensively later. In the
following definition (and everywhere else in this paper) ψ(·), ψ̃(·) and M(·) denote the functions which
were defined in (1), (26) and (22); the sequences z−m,n and z+

m,n represent the poles of M(·) and were
defined in (28); the constant η is defined by (3).

Definition 2. Define the coefficients {an}n≥0 as

an = − 1

n!

n∏
j=0

ψ(αj), n ≥ 0. (36)

The coefficients {bm,n}m,n≥0 are defined recursively

b0,0 = δ
Γ(η)Γ(−(1− β + γ)δ)

Γ(η − γ̂)Γ(−γ)
M(1− (1− β + γ)δ),

bm,n = −
ψ(−αz−m,n)

z−m,n
bm,n−1, m ≥ 0, n ≥ 1,

bm,n = −αδ(γ+γ̂)ψ̃(1− δ − z−m,n)
Γ(z−m,n)

Γ(z−m−1,n)
bm−1,n, m ≥ 1, n ≥ 0.

(37)

Similarly, {cm,n}m,n≥0 are defined recursively

c0,0 = δ
Γ(1 + β̂δ)Γ(1− β + β̂)

Γ(η − γ̂)Γ(γ̂)
M(β̂δ)

cm,n = −
z+
m,n−1

ψ(−αz+
m,n−1)

cm,n−1, ,m ≥ 0, n ≥ 1,

cm,n = − α−δ(γ+γ̂)

ψ̃(1− δ − z+
m−1,n)

Γ(z+
m,n)

Γ(z+
m−1,n)

cm−1,n, m ≥ 1, n ≥ 0.

(38)
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Note that if β = 1 we have ψ(0) = 0, which implies that an = 0 for all n ≥ 0.

Proposition 3. Assume that α /∈ Q. For all m,n ≥ 0 we have

Res(M(s) : s = −n) = an, if β < 1,

Res(M(s) : s = z−m,n) = bm,n,

Res(M(s) : s = z+
m,n) = −cm,n.

Proof. Let us prove that the residue of M(s) at s = z−m,n is equal to bm,n. First, we use Theorem 2 and
rearrange the terms in the functional identity (29) to find that

M(s) =
δM(s+ 1)

s+ (1− β + γ)δ

Γ(2− β + γ + αs)Γ(β̂ + γ̂ − αs)
Γ(1− β + αs)Γ(β̂ − αs)

.

The above identity and definition (37) imply that as s→ −(1− β + γ)δ

M(s) =
b0,0

s+ (1− β + γ)δ
+O(1),

which means that the residue of M(s) at z−0,0 = −(1− β + γ)δ is equal to b0,0.
Next, let us prove that the residues satisfy the second recursive identity in (37). We rewrite (29) as

M(s) = −ψ(−αs)
s
M(s+ 1). (39)

We know thatM(s) has a simple pole at s = z−m,n whileM(s+1) has a simple pole at z−m,n+1 = z−m−1,n.
One can also check that function ψ(−αs) is analytic at s = z−m,n for m ≥ 1. Therefore we have as
s→ z−m,n

M(s) = Res(M(s) : s = z−m,n)
1

s− z−m,n
+O(1),

M(s+ 1) = Res(M(s) : s = z−m−1,n)
1

s− z−m,n
+O(1),

−ψ(−αs)
s

= −
ψ(−αz−m,n)

z−m,n
+O(s− z−m,n)

which, together with (39) imply that

Res(M(s) : s = z−m,n) = −
ψ(−αz−m,n)

z−m,n
× Res(M(s) : s = z−m−1,n).

The proof of all remaining cases is very similar and we leave the details to the reader. ut

Proposition 3 immediately gives us a complete asymptotic expansion of p(x) as x→ 0+ and x→ +∞,
presented in the next Theorem.
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Theorem 3. Assume that α /∈ Q. Then

p(x) ∼
∑
n≥0

anx
n +

∑
m≥0

∑
n≥0

bm,nx
(m+1−β+γ)δ+n, x→ 0+, (40)

p(x) ∼
∑
m≥0

∑
n≥0

cm,nx
−(m+β̂)δ−n−1, x→ +∞. (41)

Proof. The starting point of the proof is the expression of p(x) as the inverse Mellin transform

p(x) =
1

2πi

∫
1+iR

M(s)x−sds, x > 0. (42)

Due to (25), Theorem 2 and Stirling’s formula (34) we know that |M(x + iu)| decreases exponentially
as u → ∞ (uniformly in x in any finite interval), therefore the integral in the right-hand side of (42)
converges absolutely and p(x) is a smooth function for x > 0. Assume that c < 0 satisfies c 6= z−m,n and
c 6= −n for all m,n. Shifting the contour of integration 1 + iR 7→ c + iR and taking into account the
residues at the poles s = z−m,n, we find that

p(x) =
∑

Res(M(s) : s = z−m,n)× x−z
−
m,n +

∑
0≤n<|c|

Res(M(s) : s = −n)× xn (43)

+
1

2πi

∫
c+iR

M(s)x−sds.

where the first summation is over all m ≥ 0, n ≥ 0, such that z−m,n > c. Next, we perform a change of
variables s = c+ iu and obtain the following estimate∣∣∣∣∣

∫
c+iR

M(s)x−sds

∣∣∣∣∣ = x−c

∣∣∣∣∣
∫
R

M(s)x−iudu

∣∣∣∣∣ < x−c
∫
R

|M(c+ iu)|du = O(x−c)

which proves (40). The proof of (41) is identical, except that we have to shift the contour of integration
in the opposite direction. ut

It turns out that for almost all parameters α the asymptotic series (40) and (41) converge to p(x) for
all x > 0. In order to state this result, we need to define the following set of real numbers.

Definition 3. Let L be the set of real irrational numbers x, for which there exists a constant b > 1 such
that the inequality ∣∣∣∣x− p

q

∣∣∣∣ < 1

bq
(44)

is satisfied for infinitely many integers p and q.

This set was introduced in [25] in the connection with the distribution of the supremum of a stable
process and it was later studied in [23]. It was proved in [23] that x ∈ L if and only if

lim
q→+∞

ln〈qx〉
q

= 0. (45)
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where 〈x〉 = min{|x − i| : i ∈ Z}. There also exists a characterization of elements of L in terms of
their continued fraction expansion (see Proposition 1 in [23]). It is known that L is a proper subset of
Liouville numbers, that it is dense in R and that it has Lebesgue measure zero. The Hausdorff dimension
of L is also zero. This set is closed under addition/multiplication by rational numbers. It is also known
that x ∈ L if and only if x−1 ∈ L. See [23] for proofs of these results and for some further references.

The following Theorem is our main result in this section.

Theorem 4. Assume that α /∈ L ∪Q. Then for all x > 0

p(x) =


∑
n≥0

anx
n +

∑
m≥0

∑
n≥0

bm,nx
(m+1−β+γ)δ+n, if γ + γ̂ < 1,∑

m≥0

∑
n≥0

cm,nx
−(m+β̂)δ−n−1, if γ + γ̂ > 1.

(46)

First let us establish the following technical result, which gives us a formula for M(s) similar to the
reflection formula for the Gamma function.

Lemma 3. Define

ck = 1− (1− β + γ)δ − δ/2− k. (47)

Then for all u ∈ C

M(ck + iu) = (−1)kM(ck + k + iu)×
k−1∏
j=0

cos(πα(j − iu+ γδ))

cos(πα(j − iu))
× F (−iu)

F (−iu+ k)
, (48)

where we have defined

F (w) = Γ((1− β + γ)δ + δ/2 + w)
G(3

2
δ + w; δ)

G((γ + 3
2
)δ + w; δ)

×
G((η − γ̂ + 1

2
)δ + w; δ)

G((η + 1
2
)δ + w; δ)

. (49)

Proof. Let us set s = ck + iu. Then iterating the functional identity (29) k times we obtain

M(s) = M(s+ k)
Γ(s)

Γ(s+ k)

k−1∏
j=0

Γ(1− β + γ + αs+ αj)

Γ(1− β + αs+ αj)

Γ(β̂ + γ̂ − αs− αj)
Γ(β̂ − αs− αj)

. (50)

We use identity

Γ(s)

Γ(s+ k)
= (−1)k

Γ(1− k − s)
Γ(1− s)

and the reflection formula for the gamma function and rewrite (50) as

M(s) = (−1)kM(s+ k)
Γ((1− β + γ)δ + δ/2− iu)

Γ(k + (1− β + γ)δ + δ/2− iu)
(51)

×
k−1∏
j=0

Γ(−α(k − 1− j)− 1
2

+ iαu)

Γ(−α(k − 1− j)− γ − 1
2

+ iαu)

Γ(α(k − 1− j) + η + 1
2
− iαu)

Γ(α(k − 1− j) + η − γ̂ + 1
2
− iαu)

. (52)
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Next we change the index j 7→ k − 1− j and use reflection formula for the gamma function to obtain

k−1∏
j=0

Γ(−α(k − 1− j)− 1
2

+ iαu)

Γ(−α(k − 1− j)− γ − 1
2

+ iαu)
=

k−1∏
j=0

cos(πα(j − iu+ γδ))

cos(πα(j − iu))

Γ(αj + γ + 3
2
− iαu)

Γ(αj + 3
2
− iαu)

. (53)

The proof of (48) follows from (51), (53) and the following identity

k−1∏
j=0

Γ(αj + z) =
G(δz + k; δ)

G(δz; δ)
,

which is obtained by iterating formula (19) k times. ut

Proof of Theorem 4: We will use a similar technique as in the proof of Theorem 2 in [23]. Let us
define B = 1 − γ − γ̂ and assume that B > 0. We start with (43) and set c = ck, where ck is defined
by (47). Note thatM(s) does not have singularities on the vertical line ck + iR; if this was not the case
then ck would coincide with one of the poles z−m,n, which would imply that α is rational.

We define

I1(x, k) = x−ckRe

 k∫
0

M(ck + iu)x−iudu

 , I2(x, k) = x−ckRe

 ∞∫
k

M(ck + iu)x−iudu

 . (54)

It is clear that the integral in the right-hand side of (43) is equal to 2(I1(x, k) + I2(x, k)). Our goal is to
prove that Ij(x, k)→ 0 as k → +∞ for all x > 0.

First, let us deal with I2(x, k). Using Theorem 2, formula (24) and Stirling’s asymptotic formula (34)
we find that there exists a constant C1 > 0 such that for all s in the domain

D = {s ∈ C : |s| > 2 and
π

8
< arg(s) <

7π

8
}

we have an upper bound

|M(s)| < |s|C1 exp (Re [Bs ln(s) + s((1 + ln(δ))(1−B) + πiγ̂ − 1)]) .

From now on we will denote u = Im(s). Computing the real part in the above expression we obtain that
for all s ∈ D

|M(s)| < |s|C1 exp (BRe(s) ln |s| − (πγ̂ +B arg(s))u+ Re(s)((1 + ln(δ))(1−B)− 1)) (55)

Next we check that for all k large enough, conditions u > k and s = ck + iu imply s ∈ D, so the
integrand in formula (54) defining I2(x, k) can be bounded from above as given in (55). Let us restrict
s to the line of integration L2 = {s = ck + iu : u ≥ k} and simplify this upper bound. Basically,
we want to isolate a term of the form exp(−Bk ln(k)) and show that everything else does not grow
faster than an exponential function of k. First of all, when s ∈ L2 we have Re(s) = ck < 1 − k and
|s| > |Re(s)| = |ck| > k − 1, therefore

exp (BRe(s) ln |s|) < exp(−B(k − 1) ln(k − 1)).
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Next, for s ∈ L2 and k sufficiently large it is true that −2k < Re(s) < 1 − k, which implies that there
exists a constant C2 > 0 such that

exp (Re(s)((1 + ln(δ))(1−B)− 1)) < Ck
2 .

Finally, for s ∈ L2 we have arg(s) > 0, which together with the assumption B > 0 shows that for all
u > 0

exp (−(πγ̂ +B arg(s))u) < exp(−πγ̂u).

Combining the above three estimates with (55) and (54) we see that

|I2(x, k)| ≤ x−ck

∞∫
k

|M(ck + iu)|du (56)

< x−ckCk
2 e
−B(k−1) ln(k−1)

∞∫
k

(c2
k + u2)

C1
2 e−πγ̂udu

< |ck|C1+1x−ckCk
2 e
−B(k−1) ln(k−1).

The right-hand side of the above inequality converges to 0 as k → +∞, therefore I2(x, k) → 0 as
k → +∞.

Now we will deal with I1(x, k). Our first goal is to find an upper bound for the product of trigonometric
functions in (48). We will follow the proof of Theorem 2 in [23]: we use the trigonometric identities

cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y),

| cos(x+ iy)|2 = cosh(y)2 − sin(x)2,

which imply that | cos(x)| cosh(y) ≤ | cos(x+ iy)| ≤ cosh(y), therefore∣∣∣∣cos(a+ iy)

cos(b+ iy)

∣∣∣∣ ≤ 1

| cos(b)|
.

Applying the above estimate and Lemma 1 from [23] we conclude that for α /∈ L ∪ Q and for k large
enough ∣∣∣∣∣

k−1∏
j=0

cos(πα(j − iu+ γδ))

cos(πα(j − iu))

∣∣∣∣∣ ≤
k−1∏
j=0

| sec(παj)| = 2k+o(k) < 3k.

Using (54), (50) and the above inequality we conclude that for all k large enough

|I1(x, k)| < x−ck3k
k∫

0

|M(ck + k + iu)| ×
∣∣∣∣ F (−iu)

F (−iu+ k)

∣∣∣∣du. (57)

Now our goal is to prove that F (iu)/F (−iu+k) converges to zero faster than any exponential function
of k as k → +∞. We use (49), Stirling’s formula (34) and the asymptotic expansion (23) to conclude
that when w →∞ in the domain | arg(w)| < 3π/4 we have

ln(F (w)) = Bw ln(w) +O(w).

17



 
 

This asymptotic result implies that there exists a constant C3 > 0 such that for k large enough and for
all v ∈ [0, 1] ∣∣∣∣ F (−ikv)

F (−ikv + k)

∣∣∣∣ < Ck
3 exp (BRe [(−ikv) ln(−ikv)− k(1− iv) ln(k(1− iv))])

= Ck
3 exp

(
B
[
−k ln(k

√
1 + v2) + kv

(
arctan(v)− π

2

)])
< Ck

3 exp (−Bk ln(k))

where in the last step we have used the fact that arctan(v) < π/2 and B > 0. Thus we see that for all
k large enough we have

max
0≤u≤k

∣∣∣∣ F (−iu)

F (−iu+ k)

∣∣∣∣ = max
0≤v≤1

∣∣∣∣ F (−ikv)

F (−ikv + k)

∣∣∣∣ < Ck
3 exp (−Bk ln(k))

Combining the above estimate with (57) we obtain that for all k large enough

|I1(x, k)| < x−ck3kCk
3 e
−Bk ln(k)

∞∫
0

|M(1− (1− β + γ)δ − δ/2 + iu)|du

and we see that I1(x, k)→ 0 as k → +∞. Thus when γ + γ̂ < 1 the first series in (46) converges to p(x)
for all x > 0.

When γ + γ̂ > 1 the proof is very similar, except that one has to shift the contour of integration in
the opposite direction. ut

5 Applications

In this section we will present several applications of the above results on exponential functionals of the
hypergeometric Lévy processes. In particular, we will study various functionals related to strictly stable
Lévy processes. Our main tool will be the Lamperti transformation, which links a positive self-similar
Markov process (pssMp) to an associated Lévy process. By studying this associated Lévy process and
its exponential functional we can obtain many interesting results about the original self-similar Markov
process.

We assume that the reader is familiar with the Lamperti transformation [30] and Lamperti-stable
processes (see [10, 18, 13, 12]).

5.1 Extrema of stable processes

As our first example, we will present a new proof of some the results on the distribution of extrema of
general stable processes, which were obtained in [25] and [23]. Let us define S1 = sup{Yt : 0 ≤ t ≤ 1},
where Y is a stable process with parameters (α, ρ), whose characteristic exponent is given by (7). The
infinite series representation for the density of S1 (valid for almost all values of α) was derived recently
in [23]. This formula was obtained using an explicit expression for the Mellin transform of S1, which was
found in [25] via the Wiener-Hopf factorization of stable processes. Our goal in this section is to present
a more direct route which leads to the density of S1.
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Proposition 4. We have the following identity in distribution

S−α1
d
= I(α, ξ), (58)

where ξ is a hypergeometric Lévy process with parameters (αρ, αρ, αρ, α(1− ρ)).

Proof. Some of the arguments in our proof have been used before in [18], nevertheless, we provide them
here for completeness. Let us consider the dual process Ŷ = −Y . Note that the process Ŷ is itself a
stable process with parameters (α, 1− ρ). Let Ẑ be the process killed at the first exit from the positive
half-line

Ẑt =

{
Ŷt, if t < T̂ ,

∆, if t ≥ T̂ ,

where T̂ = inf{t : Ŷt ≤ 0} and ∆ is the cemetery state. Let ξ̂ be the process associated with Ẑ by the
Lamperti transformation. We use Theorem 1 and find that ξ̂ is a hypergeometric process with parameters
(1− αρ, α(1− ρ), 1− αρ, αρ).

Next, from the Lamperti transformation we find that T̂
d
= I(α,−ξ̂). This statement is equivalent

to T̂
d
= I(α, ξ), where ξ = −ξ̂ is a hypergeometric process with parameters (αρ, αρ, αρ, α(1 − ρ)) (see

Proposition 1(v)). The rest of the proof follows from the chain of identities

P1(T̂ > t) = P1( inf
0≤s≤t

Ŷs > 0) = P0( inf
0≤s≤t

Ŷs > −1)

= P0( sup
0≤s≤t

Ys < 1) = P0(t1/α sup
0≤s≤1

Ys < 1) = P0(S−α1 > t).

ut

Proposition 4 implies that the density of S1 can be represented in terms of the density of I(α, ξ)
(denoted by p(x)) as follows

d

dx
P(S1 ≤ x) = αx−1−αp(x−α), x > 0.

Using this expression and Theorem 3 {Theorem 4} we recover the asymptotic expansions that appears
in Theorem 9 in [25] {the convergent series representations given in Theorem 2 in [23]}.

Remark 2: Note that the convergent and asymptotic series given in Theorems 4 and 3 have identical
form. Combining these two results we obtain the following picture: depending on whether γ + γ̂ < 1
or γ + γ̂ > 1 one of the series in (46) converges for all x ∈ (0,∞), and this convergent series is also
asymptotic at one of the boundaries of this interval (at 0 or +∞). At the same time the second series in
(46) provides an asymptotic series at the other boundary. Therefore in what follows we will only present
the statements about the convergent series representation, with the understanding that the asymptotic
expansions are implicitly imbedded into these results.
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5.2 Entrance laws

In this section we will obtain some explicit results on the entrance law of a stable process conditioned to
stay positive and the entrance law of the excursion measure of the stable process reflected at its infimum.
We will use the following result from [6]: if a non-arithmetic Lévy process X satisfies E[|X1|] < ∞ and
E[X1] > 0, then as x → 0+ its corresponding pssMp (Z,Qx) in the Lamperti representation converges
weakly (in the sense of finite-dimensional distributions) towards a nondegenerate probability law (Z,Q0).
Under these conditions, the entrance law under Q0 is described as follows: for every t > 0 and every
measurable function f : R+ → R+,

Q0

[
f(Zt)

]
=

1

αE[X1]
E
[

1

I
f

(
t

I

)]
, (59)

where I = I(α,X) =
∫∞

0
exp{−αXs} ds. Necessary and sufficient conditions for the weak convergence

of (Z,Qx) on the Skorokhod space were given in [11].
As before, we consider a stable process (Y,Px) and denote by (Y,P↑x) the stable process conditioned

to stay positive (see [16, 17] for a proper definition). It is known that (Y,P↑x) is a pssMp with index
α. According to Corollary 2 in [10] (and Theorem 1 above) its associated Lévy process is given by ξ↑,
which is a hypergeometric Lévy process with parameters (1, αρ, 1, α(1− ρ)). From Proposition 1(ii) we
see that E[ξ↑1 ] > 0, and the fact that hypergeometric processes have Lévy measures with exponentially
decaying tails implies that E[|ξ↑1 |] < ∞, thus we have the weak convergence of (Y,P↑x) as x → 0+. We
denote the limiting law by P↑. Note also that in this particular case, the weak convergence of (Y,P↑x) has
been proved in a direct way in [16].

Everywhere in this section the coefficients {bm,n}m,n≥0 and {cm,n}m,n≥0 are defined as in Definition 2

with parameters β = β̂ = 1, γ = αρ and γ̂ = α(1− ρ).

Proposition 5. Let p↑t be the density of the entrance law of (Y,P↑). If α /∈ L ∪ Q then for x > 0 we
have

p↑1(x) =


x−1−ρ

αΓ(αρ)Γ(1+α(1−ρ))

∑
m≥0

∑
n≥0

bm,nx
−m/α−n, if α < 1,

x1/α

αΓ(αρ)Γ(1+α(1−ρ))

∑
m≥0

∑
n≥0

cm,nx
m/α+n, if α > 1.

(60)

Proof. Let p(x) be the density of I(α, ξ↑). From (59) we find that the density of the entrance law of
(Y,P↑) is given by

p↑1(x) =
1

αE[ξ↑1 ]
x−1p(x−1).

Using Proposition 1(ii) we obtain E[ξ↑1 ] = Γ(αρ)Γ(1 + α(1 − ρ)). In order to finish the proof we only
need to apply results of Theorem 46. ut

Proposition 6. Let qt be the density of the entrance law of the excursion measure of the reflected process
(Y − Y ,P), where Y t = inf0≤s≤t Ys. If α /∈ L ∪Q then for x > 0 we have

q1(x) =


x−1−ρ−α(1−ρ)

αΓ(αρ)Γ(1+α(1−ρ))

∑
m≥0

∑
n≥0

bm,nx
−m/α−n, if α < 1,

x1/α−α(1−ρ)

αΓ(αρ)Γ(1+α(1−ρ))

∑
m≥0

∑
n≥0

cm,nx
m/α+n, if α > 1.

(61)
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Proof. The proof follows from Proposition 5 and Theorem 3 in [16], which gives us the identity q1 =
x−α(1−ρ)p↑1(x). ut

5.3 The distribution of the lifetime of a stable process conditioned to hit
zero continuously

Our third application deals with stable processes conditioned to hit zero continuously. Processes in this
class are defined as Doob’s h-transform with respect to the function h(x) = xα(1−ρ)−1, which is excessive
for the killed process (Yt1{t<T},Px). Its law P↓x, which is defined on each σ-field Ft by

dP↓x
dPx

∣∣∣∣
Ft

=
Y
α(1−ρ)−1
t

xα(1−ρ)−1
1{t<T}, (62)

is that of a pssMp that hits zero in a continuous way. According to Corollary 3 in [10] (and Theorem 1
above), its associated Lévy process in the Lamperti representation is the hypergeometric Lévy process
ξ↓ with parameters (0, αρ, 0, α(1 − ρ)). In particular from Proposition 1(ii) we find that the process
ξ↓ drifts to −∞. Let T ↓ be the life-time of the stable process conditioned to hit zero continuously.

From the Lamperti transformation it follows that T ↓
d
= I(α,−ξ↓), therefore T ↓

d
= I(α, ξ), where ξ is a

hypergeometric process with parameters (1, α(1 − ρ), 1, αρ). Let us define the coefficients {bm,n}m,n≥0

and {cm,n}m,n≥0 as in Definition 2 with β = β̂ = 1, γ = α(1−ρ) and γ̂ = αρ. Then according to Theorem
46, if α /∈ L ∪Q and x > 0 we have

d

dt
P↓1(T ↓ ≤ t) =


t1−ρ

∑
m≥0

∑
n≥0

bm,nt
m/α+n, if α < 1,

t−1−1/α
∑
m≥0

∑
n≥0

cm,nt
−m/α−n, if α > 1.

5.4 Distribution of some functionals related to the radial part of a sym-
metric stable process

Our last application deals with the radial part of symmetric stable processes in Rd. Let Y = (Yt, t ≥ 0)
be a symmetric stable Lévy process of index α ∈ (0, 2) in Rd (d ≥ 1), defined by

E0

[
ei〈λ,Yt〉

]
= e−t‖λ‖

α

,

for all t ≥ 0 and λ ∈ Rd. Here Py denotes the law of the process Y started from y ∈ Rd, ‖ · ‖ is the norm
in Rd and 〈·, ·〉 is the Euclidean inner product.

According to Caballero et al. [12], when α < d the radial process Rt = 1
2
‖Yt‖ is a transient positive

self-similar Markov process with index α and infinite lifetime. From Theorem 7 in [12] we find that the
Laplace exponent of its associated Lévy process ξ is given by

ψξ(z) = −Γ((α− z)/2)

Γ(−z/2)

Γ((z + d)/2)

Γ((z + d− α)/2)
. (63)

This shows that the process X := 2ξ is a hypergeometric Lévy process with parameters (1, α/2, (d −
α)/2, α/2). From Proposition 1(ii) we see that ξ drifts to +∞ and that

E[ξ1] =
1

2

Γ
(
α
2

)
Γ
(
d
2

)
Γ
(
d−α

2

) . (64)

21



 
 

Let Px denotes the law of the process R starting from x > 0. The process ξ satisfies E[ξ1] > 0 and
E[|ξ1| <∞, and according to [6, 11] we have the weak convergence of (R,Px) towards (R,P0) as x→ 0+.

Proposition 7. Let p̃t be the density of the entrance law of (R,P0). If α < d then for x > 0 we have

p̃1(x) =


2x−1

παΓ( d2)

∑
n≥1

sin
(
παn

2

)
Γ
(
1 + αn

2

)
Γ
(
d+αn

2

) (−1)n+1

n!
x−n, if α < 1,

4x−1+d/α

α2Γ( d2)

∑
m≥0

Γ( d+2m
α )

Γ( d+2m
2 )

(−1)m

m!
x2m/α if α > 1.

(65)

Proof. We follow the same approach as in the proof of Proposition 5. Using (59) we conclude that
p̃1(x) = (2/αE[ξ1])x−1p(x−1), where p(x) is the density of I(α, ξ) = I(α/2, X). In the case α /∈ L ∪ Q
the infinite series representation for p(x) and the expression for the coefficients follow from Theorem 46
and Definition 2 with β = 1, γ = α/2, β̂ = (d−α)/2 and γ̂ = α/2. Note that both infinite series in (65)
converge for all α, thus we can remove the assumption α /∈ L ∪Q.

There is also a simpler way to derive an explicit series representation for p(x). Theorem 2 and
Definition 1 tell us that the Mellin transform of I(α/2, X) is given by

E[I(α/2, X)s−1] = Γ(s)M

(
s;
α

2
, 1,

α

2
,
d− α

2
,
α

2

)
= CΓ(s)

G
(
s; 2

α

)
G
(
1 + s; 2

α

)G ( dα + 1− s; 2
α

)
G
(
d
α
− s; 2

α

) , (66)

where C is a constant such that the right-hand side of the above identity is equal to one for s = 1. Using
the functional identity (19) for the double gamma function we simplify the right-hand side in (66) and
obtain

E[I(α/2, X)s−1] =
Γ
(
α
2

)
Γ
(
d−α

2

)Γ(s)
Γ
(
d−αs

2

)
Γ
(
αs
2

) . (67)

We see that E[I(α/2, X)s−1] has simple poles at points {−n}n≥1 and {(d+ 2m)/α}m≥0. The residues at
these points (which give us the coefficients in (65)) can be easily found using the fact that the residue of
Γ(s) at s = −n is equal to (−1)n/n!. ut

Next, we will study the last passage time of (Y,P0) from the sphere in Rd of radius r, i.e.

Ur = sup{s ≥ 0 : ‖Ys‖ < r}.

Due to the self-similarity property of Y we find that random variables Ur satisfy the scaling property

bαUr
d
= Ubr (valid for any b, r > 0), thus it is sufficient to consider the case of of U2.

Proposition 8. If α < d then

d

dt
P(U2 ≤ t) =


1

πΓ( d−α2 )

∑
n≥0

sin
(
πα(1+n)

2

)
Γ
(
α(1+n)

2

)
Γ
(
d+αn

2

) (−1)n

n!
tn, if α < 1,

2t−d/α

αΓ( d−α2 )

∑
m≥0

Γ( d+2m
α )

Γ( d−α2 +m+1)
(−1)m

m!
t−2m/α, if α > 1.

(68)

Proof. Let us define the last passage time of R as Lr = sup{s ≥ 0 : ‖Rs‖ < r}. It is clear that U2
d
= L1.

According to Proposition 1 in [19], the random variable L1 has the same law as GαI(α, ξ), where ξ is the

22



 
 

Lévy process associated to R by the Lamperti transformation and G is independent of ξ. Lemma 1 in

[19] tells us that G d
= e−UZ , where U and Z are independent random variables, such that U is uniformly

distributed over [0, 1] and the law of Z is given by

P(Z > u) =
1

E[H1]

∞∫
u

x ν(dx), u ≥ 0,

where H = (Ht, t ≥ 0) denotes the ascending ladder height of ξ and ν its Lévy measure. From the proof
of Lemma 3 in [12] we know that H has no linear drift and that its Lévy measure is given by (up to a
multiplicative constant)

ν(dx) =
e2x

(e2x − 1)1+α/2
dx.

Using the above expression, integration by parts, the integral identity (14) and reflection formula for the
gamma function we obtain

E[H1] =

∞∫
0

xν(dx) =
π

α sin(πα
2

)
.

Let us find the Mellin transform of L1. We use the independence of U and Z and obtain

E[Gs] = E
[
e−sUZ

]
=

1

s
E
[

1− e−sZ

Z

]
=

1

sE[H1]

∞∫
0

(1− e−sz)e2z

(e2z − 1)1+α/2
dz

= − 1

αsE[H1]

∞∫
0

(1− e−sz)d
[
(e2z − 1)−α/2

]
=

1

αE[H1]

∞∫
0

e−sz

(e2z − 1)α/2
dz =

1

αE[H1]

Γ
(
α
2
(1 + s)

)
Γ
(
1− α

2

)
Γ
(
1 + αs

2

) ,

where we have again applied integration by parts and integral identity (14). Combining the above two
expressions with (67) we have

E[Ls−1
1 ] = E[Gs−1]× E[I(α, ξ)s−1] =

Γ(s)

Γ
(
d−α

2

) Γ
(
d−αs

2

)
Γ
(

1− α(1−s)
2

) .
The function in the right-hand side of the above equation has simple poles at points {−n}n≥0 and
{(d + 2m)/α}m≥0. We express the density of L1 as the inverse Mellin transform, compute the residues
and use similar technique as in the proof of Theorem 46 to obtain the series representation (68). ut
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